Mathematics > Logic
[Submitted on 4 Feb 2022]
Title:Complexity classes of Polishable subgroups
View PDFAbstract:In this paper we further develop the theory of canonical approximations of Polishable subgroups of Polish groups, building on previous work of Solecki and Farah--Solecki. In particular, we obtain a characterization of such canonical approximations in terms of their Borel complexity class. As an application we provide a complete list of all the possible Borel complexity classes of Polishable subgroups of Polish groups or, equivalently, of the ranges of continuous group homomorphisms between Polish groups. We also provide a complete list of all the possible Borel complexity classes of the ranges of: continuous group homomorphisms between non-Archimedean Polish groups; continuous linear maps between separable Fréchet spaces; continuous linear maps between separable Banach spaces.
Current browse context:
math.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.