Computer Science > Information Theory
[Submitted on 4 Feb 2022 (v1), last revised 25 Mar 2022 (this version, v2)]
Title:Wideband Multi-User MIMO Communications with Frequency Selective RISs: Element Response Modeling and Sum-Rate Maximization
View PDFAbstract:Reconfigurable Intelligent Surfaces (RISs) are an emerging technology for future wireless communication systems, enabling improved coverage in an energy efficient manner. RISs are usually metasurfaces, constituting of two-dimensional arrangements of metamaterial elements, whose individual response is commonly modeled in the literature as an adjustable phase shifter. However, this model holds only for narrowband communications, and when wideband transmissions are utilized, one has to account for the frequency selectivity of metamaterials, whose response usually follows a Lorentzian-like profile. In this paper, we consider the uplink of a wideband RIS-empowered multi-user Multiple-Input Multiple-Output (MIMO) wireless system with Orthogonal Frequency Division Multiplexing (OFDM) signaling, while accounting for the frequency selectivity of RISs. In particular, we focus on designing the controllable parameters dictating the Lorentzian response of each RIS metamaterial element, in order to maximize the achievable sum rate. We devise a scheme combining block coordinate descent with penalty dual decomposition to tackle the resulting challenging optimization framework. Our simulation results reveal the achievable rates one can achieve using realistically frequency selective RISs in wideband settings, and quantify the performance loss that occurs when using state-of-the-art methods which assume that the RIS elements behave as frequency-flat phase shifters.
Submission history
From: George Alexandropoulos [view email][v1] Fri, 4 Feb 2022 14:55:27 UTC (1,375 KB)
[v2] Fri, 25 Mar 2022 06:38:35 UTC (1,363 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.