Mathematics > Numerical Analysis
[Submitted on 22 Mar 2022]
Title:Piecewise discretization of monodromy operators of delay equations on adapted meshes
View PDFAbstract:Periodic solutions of delay equations are usually approximated as continuous piecewise polynomials on meshes adapted to the solutions' profile. In practical computations this affects the regularity of the (coefficients of the) linearized system and, in turn, the effectiveness of assessing local stability by approximating the Floquet multipliers. To overcome this problem when computing multipliers by collocation, the discretization grid should include the piecewise adapted mesh of the computed periodic solution. By introducing a piecewise version of existing pseudospectral techniques, we explain why and show experimentally that this choice is essential in presence of either strong mesh adaptation or nontrivial multipliers whose eigenfunctions' profile is unrelated to that of the periodic solution.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.