Computer Science > Machine Learning
[Submitted on 20 Apr 2022 (v1), last revised 17 Nov 2023 (this version, v3)]
Title:Comparing Deep Reinforcement Learning Algorithms in Two-Echelon Supply Chains
View PDFAbstract:In this study, we analyze and compare the performance of state-of-the-art deep reinforcement learning algorithms for solving the supply chain inventory management problem. This complex sequential decision-making problem consists of determining the optimal quantity of products to be produced and shipped across different warehouses over a given time horizon. In particular, we present a mathematical formulation of a two-echelon supply chain environment with stochastic and seasonal demand, which allows managing an arbitrary number of warehouses and product types. Through a rich set of numerical experiments, we compare the performance of different deep reinforcement learning algorithms under various supply chain structures, topologies, demands, capacities, and costs. The results of the experimental plan indicate that deep reinforcement learning algorithms outperform traditional inventory management strategies, such as the static (s, Q)-policy. Furthermore, this study provides detailed insight into the design and development of an open-source software library that provides a customizable environment for solving the supply chain inventory management problem using a wide range of data-driven approaches.
Submission history
From: Francesco Stranieri [view email][v1] Wed, 20 Apr 2022 16:33:01 UTC (178 KB)
[v2] Sat, 13 Aug 2022 10:55:31 UTC (77 KB)
[v3] Fri, 17 Nov 2023 16:42:46 UTC (100 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.