Statistics > Methodology
[Submitted on 21 Apr 2022 (v1), last revised 25 Nov 2022 (this version, v2)]
Title:Targeting functional parameters with semiparametric Bayesian inference
View PDFAbstract:Typical Bayesian inference requires parameter identification via likelihood parameterization, which has invited criticism for being less flexible than the Frequentist framework and subject to misspecification. Though misspecification may be avoided by functional parameter inference under a nonparametric model space, there does not exist a flexible Bayesian semiparametric model that would allow full control over the marginal prior over any general functional parameter. We present the technique of $\theta$-augmentation which helps us manipulate nonparametric models into semiparametric ones that directly target any functional parameter. The method allows Bayesian probabilistic statements to be drawn for any estimator that is defined as a functional of the empirical distribution without requiring a likelihood function, thus providing a path to Bayesian analysis in problems like causal inference and censoring where there do not exist well-accepted likelihood functions.
Submission history
From: Vivian Y. Meng [view email][v1] Thu, 21 Apr 2022 03:36:40 UTC (192 KB)
[v2] Fri, 25 Nov 2022 20:13:21 UTC (191 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.