Statistics > Computation
[Submitted on 21 Apr 2022]
Title:Optimal Scaling for the Proximal Langevin Algorithm in High Dimensions
View PDFAbstract:The Metropolis-adjusted Langevin (MALA) algorithm is a sampling algorithm that incorporates the gradient of the logarithm of the target density in its proposal distribution. In an earlier joint work \cite{pill:stu:12}, the author had extended the seminal work of \cite{Robe:Rose:98} and showed that in stationarity, MALA applied to an $N$-dimensional approximation of the target will take ${\cal O}(N^{\frac13})$ steps to explore its target measure. It was also shown in \cite{Robe:Rose:98,pill:stu:12} that, as a consequence of the diffusion limit, the MALA algorithm is optimized at an average acceptance probability of $0.574$. In \cite{pere:16}, Pereyra introduced the proximal MALA algorithm where the gradient of the log target density is replaced by the proximal function (mainly aimed at implementing MALA non-differentiable target densities). In this paper, we show that for a wide class of twice differentiable target densities, the proximal MALA enjoys the same optimal scaling as that of MALA in high dimensions and also has an average optimal acceptance probability of $0.574$. The results of this paper thus give the following practically useful guideline: for smooth target densities where it is expensive to compute the gradient while implementing MALA, users may replace the gradient with the corresponding proximal function (that can be often computed relatively cheaply via convex optimization) \emph{without} losing any efficiency. This confirms some of the empirical observations made in \cite{pere:16}.
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.