Electrical Engineering and Systems Science > Systems and Control
[Submitted on 24 May 2022 (v1), last revised 25 Aug 2022 (this version, v2)]
Title:Stability in data-driven MPC: an inherent robustness perspective
View PDFAbstract:Data-driven model predictive control (DD-MPC) based on Willems' Fundamental Lemma has received much attention in recent years, allowing to control systems directly based on an implicit data-dependent system description. The literature contains many successful practical applications as well as theoretical results on closed-loop stability and robustness. In this paper, we provide a tutorial introduction to DD-MPC for unknown linear time-invariant (LTI) systems with focus on (robust) closed-loop stability. We first address the scenario of noise-free data, for which we present a DD-MPC scheme with terminal equality constraints and derive closed-loop properties. In case of noisy data, we introduce a simple yet powerful approach to analyze robust stability of DD-MPC by combining continuity of DD-MPC w.r.t. noise with inherent robustness of model-based MPC, i.e., robustness of nominal MPC w.r.t. small disturbances. Moreover, we discuss how the presented proof technique allows to show closed-loop stability of a variety of DD-MPC schemes with noisy data, as long as the corresponding model-based MPC is inherently robust.
Submission history
From: Julian Berberich [view email][v1] Tue, 24 May 2022 07:33:42 UTC (85 KB)
[v2] Thu, 25 Aug 2022 13:25:09 UTC (99 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.