Mathematics > Complex Variables
[Submitted on 1 Jun 2022 (v1), last revised 19 Jun 2022 (this version, v2)]
Title:Boundary points, minimal $L^2$ integrals and concavity property V -- vector bundles
View PDFAbstract:In this article, for singular hermitian metrics on holomorphic vector bundles, we consider minimal $L^2$ integrals on sublevel sets of plurisubharmonic functions on weakly pseudoconvex Kähler manifolds related to modules at boundary points of the sublevel sets, and establish a concavity property of the minimal $L^2$ integrals. As applications, we present a necessary condition for the concavity degenerating to linearity, a strong openness property of the modules and a twisted version, an effectiveness result of the strong openness property of the modules, and an optimal support function related to the modules.
Submission history
From: Qi'an Guan [view email][v1] Wed, 1 Jun 2022 12:24:24 UTC (48 KB)
[v2] Sun, 19 Jun 2022 13:37:28 UTC (48 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.