Mathematics > Numerical Analysis
[Submitted on 1 Jun 2022 (v1), last revised 19 Oct 2022 (this version, v2)]
Title:Regular Convergence and Finite Element Methods for Eigenvalue Problems
View PDFAbstract:Regular convergence, together with various other types of convergence, has been studied since the 1970s for the discrete approximations of linear operators. In this paper, we consider the eigenvalue approximation of compact operators whose spectral problem can be written as the eigenvalue problem of some holomophic Fredholm operator function. Focusing on the finite element methods (conforming, discontinuous Galerkin, etc.), we show that the regular convergence of discrete holomorphic operator functions follows from the approximation property of the finite element spaces and the compact convergence of the discrete operators in some suitable Sobolev space. The convergence for eigenvalues is then obtained using the discrete approximation theory for the eigenvalue problems of holomorphic Fredholm operator functions. The result can be used to show the convergence of various finite element methods for eigenvalue problems such as the Dirhcilet eigenvalue problem and the biharmonic eigenvalue problem.
Submission history
From: Jiguang Sun [view email][v1] Wed, 1 Jun 2022 16:56:11 UTC (18 KB)
[v2] Wed, 19 Oct 2022 12:59:35 UTC (20 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.