Mathematics > Numerical Analysis
[Submitted on 2 Jun 2022]
Title:Inf-sup stabilized Scott--Vogelius pairs on general simplicial grids by Raviart--Thomas enrichment
View PDFAbstract:This paper considers the discretization of the Stokes equations with Scott--Vogelius pairs of finite element spaces on arbitrary shape-regular simplicial grids. A novel way of stabilizing these pairs with respect to the discrete inf-sup condition is proposed and analyzed. The key idea consists in enriching the continuous polynomials of order $k$ of the Scott--Vogelius velocity space with appropriately chosen and explicitly given Raviart--Thomas bubbles. This approach is inspired by [Li/Rui, IMA J. Numer. Anal, 2021], where the case $k=1$ was studied. The proposed method is pressure-robust, with optimally converging $\boldsymbol{H}^1$-conforming velocity and a small $\boldsymbol{H}(\mathrm{div})$-conforming correction rendering the full velocity divergence-free. For $k\ge d$, with $d$ being the dimension, the method is parameter-free. Furthermore, it is shown that the additional degrees of freedom for the Raviart--Thomas enrichment and also all non-constant pressure degrees of freedom can be condensated, effectively leading to a pressure-robust, inf-sup stable, optimally convergent $\boldsymbol{P}_k \times P_0$ scheme. Aspects of the implementation are discussed and numerical studies confirm the analytic results.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.