Mathematics > Metric Geometry
[Submitted on 7 Jul 2022 (v1), last revised 7 Aug 2024 (this version, v2)]
Title:Rigidities of Isoperimetric inequality under nonnegative Ricci curvature
View PDF HTML (experimental)Abstract:The sharp isoperimetric inequality for non-compact Riemannian manifolds with non-negative Ricci curvature and Euclidean volume growth has been obtained in increasing generality with different approaches in a number of contributions [arXiv:1812.05022, arXiv:2012.09490, arXiv:2009.13717, arXiv:2103.08496] culminated by Balogh and Kristaly [arXiv:2012.11862] covering also m.m.s.'s verifying the non-negative Ricci curvature condition in the synthetic sense of Lott, Sturm and Villani. In sharp contrast with the compact case of positive Ricci curvature, for a large class of spaces including weighted Riemannian manifolds, no complete characterisation of the equality cases is present in the literature.
The scope of this note is to settle this problem by proving, in the same generality of [arXiv:2012.11862], that the equality in the isoperimetric inequality can be attained only by metric balls. Whenever this happens the space is forced, in a measure theoretic sense, to be a cone.
Our result applies to different frameworks yielding as corollaries new rigidity results: it extend to weighted Riemannian manifold the rigidity results of [arXiv:2009.13717], it extend to general $\mathsf{RCD}$ spaces the rigidity results of [arXiv:2201.04916] and finally applies also to the Euclidean setting by proving that that optimisers in the anisotropic and weighted isoperimetric inequality for Euclidean cones are necessarily the Wulff shapes.
Submission history
From: Davide Manini [view email][v1] Thu, 7 Jul 2022 16:48:55 UTC (57 KB)
[v2] Wed, 7 Aug 2024 15:56:17 UTC (58 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.