Mathematics > Metric Geometry
[Submitted on 7 Jul 2022 (v1), last revised 28 Oct 2022 (this version, v2)]
Title:Approximate Carathéodory bounds via Discrepancy Theory
View PDFAbstract:The approximate Carathéodory problem in general form is as follows: Given two symmetric convex bodies $P,Q \subseteq \mathbb{R}^m$, a parameter $k \in \mathbb{N}$ and $\mathbf{z} \in \textrm{conv}(X)$ with $X \subseteq P$, find $\mathbf{v}_1,\ldots,\mathbf{v}_k \in X$ so that $\|\mathbf{z} - \frac{1}{k}\sum_{i=1}^k \mathbf{v}_i\|_Q$ is minimized. Maurey showed that if both $P$ and $Q$ coincide with the $\| \cdot \|_p$-ball, then an error of $O(\sqrt{p/k})$ is possible. We prove a reduction to the vector balancing constant from discrepancy theory which for most cases can provide tight bounds for general $P$ and $Q$. For the case where $P$ and $Q$ are both $\| \cdot \|_p$-balls we prove an upper bound of $\sqrt{ \frac{\min\{ p, \log (\frac{2m}{k}) \}}{k}}$. Interestingly, this bound cannot be obtained taking independent random samples; instead we use the Lovett-Meka random walk. We also prove an extension to the more general case where $P$ and $Q$ are $\|\cdot \|_p$ and $\| \cdot \|_q$-balls with $2 \leq p \leq q \leq \infty$.
Submission history
From: Victor Reis [view email][v1] Thu, 7 Jul 2022 23:26:35 UTC (197 KB)
[v2] Fri, 28 Oct 2022 05:48:44 UTC (218 KB)
Current browse context:
math.MG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.