Computer Science > Information Theory
[Submitted on 8 Aug 2022]
Title:Minimal Binary Linear Codes from Vectorial Boolean Functions
View PDFAbstract:Recently, much progress has been made to construct minimal linear codes due to their preference in secret sharing schemes and secure two-party computation. In this paper, we put forward a new method to construct minimal linear codes by using vectorial Boolean functions. Firstly, we give a necessary and sufficient condition for a generic class of linear codes from vectorial Boolean functions to be minimal. Based on that, we derive some new three-weight minimal linear codes and determine their weight distributions. Secondly, we obtain a necessary and sufficient condition for another generic class of linear codes from vectorial Boolean functions to be minimal and to be violated the AB condition. As a result, we get three infinite families of minimal linear codes violating the AB condition. To the best of our knowledge, this is the first time that minimal liner codes are constructed from vectorial Boolean functions. Compared with other known ones, in general the minimal liner codes obtained in this paper have higher dimensions.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.