Mathematics > Optimization and Control
[Submitted on 10 Oct 2022 (v1), last revised 9 Jul 2023 (this version, v4)]
Title:Strong Variational Sufficiency for Nonlinear Semidefinite Programming and its Implications
View PDFAbstract:Strong variational sufficiency is a newly proposed property, which turns out to be of great use in the convergence analysis of multiplier methods. However, what this property implies for non-polyhedral problems remains a puzzle. In this paper, we prove the equivalence between the strong variational sufficiency and the strong second order sufficient condition (SOSC) for nonlinear semidefinite programming (NLSDP), without requiring the uniqueness of multiplier or any other constraint qualifications. Based on this characterization, the local convergence property of the augmented Lagrangian method (ALM) for NLSDP can be established under strong SOSC in the absence of constraint qualifications. Moreover, under the strong SOSC, we can apply the semi-smooth Newton method to solve the ALM subproblems of NLSDP as the positive definiteness of the generalized Hessian of augmented Lagrangian function is satisfied.
Submission history
From: Shiwei Wang [view email][v1] Mon, 10 Oct 2022 06:06:29 UTC (121 KB)
[v2] Fri, 21 Oct 2022 12:46:11 UTC (122 KB)
[v3] Mon, 20 Feb 2023 02:30:46 UTC (123 KB)
[v4] Sun, 9 Jul 2023 08:27:25 UTC (120 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.