Mathematics > Optimization and Control
[Submitted on 30 Oct 2022]
Title:Sparse Convex Optimization Toolkit: A Mixed-Integer Framework
View PDFAbstract:This paper proposes an open-source distributed solver for solving Sparse Convex Optimization (SCO) problems over computational networks. Motivated by past algorithmic advances in mixed-integer optimization, the Sparse Convex Optimization Toolkit (SCOT) adopts a mixed-integer approach to find exact solutions to SCO problems. In particular, SCOT brings together various techniques to transform the original SCO problem into an equivalent convex Mixed-Integer Nonlinear Programming (MINLP) problem that can benefit from high-performance and parallel computing platforms. To solve the equivalent mixed-integer problem, we present the Distributed Hybrid Outer Approximation (DiHOA) algorithm that builds upon the LP/NLP based branch-and-bound and is tailored for this specific problem structure. The DiHOA algorithm combines the so-called single- and multi-tree outer approximation, naturally integrates a decentralized algorithm for distributed convex nonlinear subproblems, and utilizes enhancement techniques such as quadratic cuts. Finally, we present detailed computational experiments that show the benefit of our solver through numerical benchmarks on 140 SCO problems with distributed datasets. To show the overall efficiency of SCOT we also provide performance profiles comparing SCOT to other state-of-the-art MINLP solvers.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.