High Energy Physics - Phenomenology
[Submitted on 6 Apr 2023 (v1), last revised 31 Oct 2023 (this version, v2)]
Title:Exploring fully heavy scalar tetraquarks $QQ\overline{Q}\overline{Q}$
View PDFAbstract:The masses, current couplings and widths of the fully heavy scalar tetraquarks $X_{\mathrm{4Q}}=QQ\overline{Q}\overline{Q}$, $Q=c, b$ are calculated by modeling them as four-quark systems composed of axial-vector diquark and antidiquark. The masses $m^{(\prime)}$ and couplings $ f^{(\prime)}$ of these tetraquarks are computed in the context of the QCD sum rule method by taking into account a nonperturbative term proportional to the gluon condensate $\langle \alpha _{s}G^{2}/ \pi \rangle$. Results $ m=(6570 \pm 55)~\mathrm{MeV}$ and $m^{\prime}=(18540 \pm 50)~\mathrm{MeV}$ are used to fix kinematically allowed hidden-flavor decay channels of these states. It turns out that, the processes $X_{\mathrm{4c}}\rightarrow J/\psi J/\psi $, $X_{\mathrm{4c}}\rightarrow \eta _{c}\eta _{c}$, and $X_{\mathrm{4c }}\rightarrow \eta _{c}\chi _{c1}(1P)$ are possible decay modes of $X_{ \mathrm{4c}}$. The partial widths of these channels are evaluated by means of the couplings $g_{i}, i=1,2,3$ which describe strong interactions of tetraquark $X_{\mathrm{4c}}$ and mesons at relevant vertices. The couplings $ g_{i}$ are extracted from the QCD three-point sum rules by extrapolating corresponding form factors $g_{i}(Q^2) $ to the mass-shell of a final meson. The mass of the scalar tetraquark $X_{\mathrm{4b}}$ is below the $\eta_b \eta_b$ and $\Upsilon(1S)\Upsilon(1S)$ thresholds, therefore it does not fall apart to these bottomonia, but transforms to conventional particles through other mechanisms. Comparing $m=(6570 \pm 55)~\mathrm{MeV}$ and $ \Gamma _{\mathrm{4c}}=(110 \pm 21)~\mathrm{MeV}$ with parameters of structures observed by the LHCb, ATLAS and CMS collaborations, we interpret $ X_{4c}$ as the resonance $X(6600)$ reported by CMS. Comparisons are made with other theoretical predictions.
Submission history
From: Kazem Azizi [view email][v1] Thu, 6 Apr 2023 17:26:31 UTC (211 KB)
[v2] Tue, 31 Oct 2023 07:24:36 UTC (212 KB)
Current browse context:
hep-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.