High Energy Physics - Phenomenology
[Submitted on 11 Apr 2023 (v1), last revised 17 Sep 2024 (this version, v2)]
Title:Thermodynamics of a rotating hadron resonance gas with van der Waals interaction
View PDF HTML (experimental)Abstract:Studying the thermodynamics of the systems produced in ultra-relativistic heavy-ion collisions is crucial in understanding the QCD phase diagram. Recently, a new avenue has opened regarding the implications of large initial angular momentum and subsequent vorticity in the medium evolution in high-energy collisions. This adds a new type of chemical potential into the partonic and hadronic systems, called the rotational chemical potential. We study the thermodynamics of an interacting hadronic matter under rotation, formed in an ultra-relativistic collision. We introduce attractive and repulsive interactions through the van der Waals equation of state. Thermodynamic properties like the pressure ($P$), energy density ($\varepsilon$), entropy density ($s$), trace anomaly ($(\varepsilon - 3P)/T^{4}$), specific heat ($c_{\rm v}$) and squared speed of sound ($c_{\rm s}^{2}$) are studied as functions of temperature ($T$) for zero and finite rotation chemical potential. The conserved charge fluctuations, which can be quantified by their respective susceptibilities, are also studied. The rotational (spin) density corresponding to the rotational chemical potential is explored. In addition, we explore the possible liquid-gas phase transition in the hadron gas with van der Waals interaction in the $T$ -- $\omega$ phase space.
Submission history
From: Raghunath Sahoo [view email][v1] Tue, 11 Apr 2023 12:49:56 UTC (207 KB)
[v2] Tue, 17 Sep 2024 05:34:42 UTC (113 KB)
Current browse context:
hep-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.