Mathematics > Combinatorics
[Submitted on 19 Jul 2024]
Title:Coprime networks of the composite numbers: pseudo-randomness and synchronizability
View PDF HTML (experimental)Abstract:In this paper, we propose a network whose nodes are labeled by the composite numbers and two nodes are connected by an undirected link if they are relatively prime to each other. As the size of the network increases, the network will be connected whenever the largest possible node index $n\geq 49$. To investigate how the nodes are connected, we analytically describe that the link density saturates to $6/\pi^2$, whereas the average degree increases linearly with slope $6/\pi^2$ with the size of the network. To investigate how the neighbors of the nodes are connected to each other, we find the shortest path length will be at most 3 for $49\leq n\leq 288$ and it is at most 2 for $n\geq 289$. We also derive an analytic expression for the local clustering coefficients of the nodes, which quantifies how close the neighbors of a node to form a triangle. We also provide an expression for the number of $r$-length labeled cycles, which indicates the existence of a cycle of length at most $O(\log n)$. Finally, we show that this graph sequence is actually a sequence of weakly pseudo-random graphs. We numerically verify our observed analytical results. As a possible application, we have observed less synchronizability (the ratio of the largest and smallest positive eigenvalue of the Laplacian matrix is high) as compared to Erdős-Rényi random network and Barabási-Albert network. This unusual observation is consistent with the prolonged transient behaviors of ecological and predator-prey networks which can easily avoid the global synchronization.
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.