High Energy Physics - Theory
[Submitted on 30 Nov 2024]
Title:NUTs, Bolts, and Spindles
View PDF HTML (experimental)Abstract:We construct new infinite classes of Euclidean supersymmetric solutions of four dimensional minimal gauged supergravity comprising a $U (1) \times U (1)$-invariant, asymptotically locally hyperbolic, metric on the total space of orbifold line bundles over a spindle (bolt). The conformal boundary is generically a squashed, branched, lens space and the graviphoton gauge field can have either twist or anti-twist through the spindle bolt. Correspondingly, the boundary geometry inherits two types of rigid Killing spinors, that we refer to as twist and anti-twist for the three-dimensional Seifert orbifolds, as well as some specific flat connections for the background gauge field, determined by the data of the spindle bolt. For all our solutions we compute the holographically renormalized on-shell action and compare it to the expression obtained via equivariant localization, uncovering a markedly distinct behaviour in the cases of twist and anti-twist. Our results provide precise predictions for the large $N$ limit of the corresponding localized partition functions of three-dimensional $\mathcal{N}=2$ superconformal field theories placed on Seifert orbifolds.
Submission history
From: Alessio Fontanarossa [view email][v1] Sat, 30 Nov 2024 10:52:26 UTC (79 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.