Quantum Physics
[Submitted on 6 Dec 2024 (v1), last revised 11 Dec 2024 (this version, v2)]
Title:Fast Laplace transforms on quantum computers
View PDFAbstract:While many classical algorithms rely on Laplace transforms, it has remained an open question whether these operations could be implemented efficiently on quantum computers. In this work, we introduce the Quantum Laplace Transform (QLT), which enables the implementation of $N\times N$ discrete Laplace transforms on quantum states encoded in $\lceil \log_2(N)\rceil$-qubits. In many cases, the associated quantum circuits have a depth that scales with $N$ as $O(\log(\log(N)))$ and a size that scales as $O(\log(N))$, requiring exponentially fewer operations and double-exponentially less computational time than their classical counterparts. These efficient scalings open the possibility of developing a new class of quantum algorithms based on Laplace transforms, with potential applications in physics, engineering, chemistry, machine learning, and finance.
Submission history
From: Julien Zylberman [view email][v1] Fri, 6 Dec 2024 16:44:00 UTC (88 KB)
[v2] Wed, 11 Dec 2024 12:11:49 UTC (89 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.