Quantitative Biology > Neurons and Cognition
[Submitted on 28 Feb 2025]
Title:Dynamic Markov Blanket Detection for Macroscopic Physics Discovery
View PDFAbstract:The free energy principle (FEP), along with the associated constructs of Markov blankets and ontological potentials, have recently been presented as the core components of a generalized modeling method capable of mathematically describing arbitrary objects that persist in random dynamical systems; that is, a mathematical theory of ``every'' ``thing''. Here, we leverage the FEP to develop a mathematical physics approach to the identification of objects, object types, and the macroscopic, object-type-specific rules that govern their behavior. We take a generative modeling approach and use variational Bayesian expectation maximization to develop a dynamic Markov blanket detection algorithm that is capable of identifying and classifying macroscopic objects, given partial observation of microscopic dynamics. This unsupervised algorithm uses Bayesian attention to explicitly label observable microscopic elements according to their current role in a given system, as either the internal or boundary elements of a given macroscopic object; and it identifies macroscopic physical laws that govern how the object interacts with its environment. Because these labels are dynamic or evolve over time, the algorithm is capable of identifying complex objects that travel through fixed media or exchange matter with their environment. This approach leads directly to a flexible class of structured, unsupervised algorithms that sensibly partition complex many-particle or many-component systems into collections of interacting macroscopic subsystems, namely, ``objects'' or ``things''. We derive a few examples of this kind of macroscopic physics discovery algorithm and demonstrate its utility with simple numerical experiments, in which the algorithm correctly labels the components of Newton's cradle, a burning fuse, the Lorenz attractor, and a simulated cell.
Submission history
From: Maxwell J. D. Ramstead [view email][v1] Fri, 28 Feb 2025 16:48:53 UTC (807 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.