Quantitative Biology > Neurons and Cognition
[Submitted on 18 Feb 2025]
Title:Time-Irreversible Quantum-Classical Dynamics of Molecular Models in the Brain
View PDF HTML (experimental)Abstract:This manuscript aims to illustrate a quantum-classical dissipative theory (suited to be converted to effective algorithms for numerical simulations) within the long-term project of studying molecular processes in the brain. Other approaches, briefly sketched in the text, have advocated the need to deal with both quantum and classical dynamic variables when studying the brain. At variance with these other frameworks, the manuscript's formalism allows us to explicitly treat the classical dynamical variables. The theory must be dissipative not because of formal requirements but because brain processes appear to be dissipative at the molecular, physiological, and high functional levels. We discuss theoretically that using Brownian dynamics or the Nosè-Hoover-Chain thermostat to perform computer simulations provides an effective way to introduce an arrow of time for open quantum systems in a classical environment. In the future, We plan to study classical models of neurons and astrocytes, as well as their networks, coupled to quantum dynamical variables describing, e.g., nuclear and electron spins, HOMO and LUMO orbitals of phenyl and indole rings, ion channels, and tunneling protons.
Current browse context:
q-bio.NC
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.