Physics > Biological Physics
[Submitted on 1 Mar 2025]
Title:Phylogenetic Corrections and Higher-Order Sequence Statistics in Protein Families: The Potts Model vs MSA Transformer
View PDF HTML (experimental)Abstract:Recent generative learning models applied to protein multiple sequence alignment (MSA) datasets include simple and interpretable physics-based Potts covariation models and other machine learning models such as MSA-Transformer (MSA-T). The best models accurately reproduce MSA statistics induced by the biophysical constraints within proteins, raising the question of which functional forms best model the underlying physics. The Potts model is usually specified by an effective potential including pairwise residue-residue interaction terms, but it has been suggested that MSA-T can capture the effects induced by effective potentials which include more than pairwise interactions and implicitly account for phylogenetic structure in the MSA. Here we compare the ability of the Potts model and MSA-T to reconstruct higher-order sequence statistics reflecting complex biological sequence constraints. We find that the model performance depends greatly on the treatment of phylogenetic relationships between the sequences, which can induce non-biophysical mutational covariation in MSAs. When using explicit corrections for phylogenetic dependencies, we find the Potts model outperforms MSA-T in detecting epistatic interactions of biophysical origin.
Current browse context:
physics.bio-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.