Astrophysics
[Submitted on 14 Apr 2000]
Title:Apse Alignment of Narrow Eccentric Planetary Rings
View PDFAbstract: The boundaries of the Uranian epsilon, alpha, and beta rings can be fitted by Keplerian ellipses. The pair of ellipses that outline a given ring share a common line of apsides. Apse alignment is surprising because the quadrupole moment of Uranus induces differential precession. We propose that rigid precession is maintained by a balance of forces due to ring self-gravity, planetary oblateness, and interparticle collisions. Collisional impulses play an especially dramatic role near ring edges. Pressure-induced accelerations are maximal near edges because there (1) velocity dispersions are enhanced by resonant satellite perturbations, and (2) the surface density declines steeply. Remarkably, collisional forces felt by material in the last 100 m of a 10 km wide ring can increase equilibrium masses up to a factor of 100. New ring surface densities are derived which accord with Voyager radio measurements. In contrast to previous models, collisionally modified self-gravity appears to allow for both negative and positive eccentricity gradients; why all narrow planetary rings exhibit positive eccentricity gradients remains an open question.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.