Astrophysics
[Submitted on 13 Nov 2000]
Title:Emission from Dust in Galaxies: Metallicity Dependence
View PDFAbstract: Infrared (IR) dust emission from galaxies is frequently used as an indicator of star formation rate (SFR). However, the effect of the dust-to-gas ratio (i.e., amount of the dust) on the conversion law from IR luminosity to SFR has not so far been considered. Then, in this paper, we present a convenient analytical formula including this effect. In order to obtain the dependence on the dust-to-gas ratio, we extend the formula derived in our previous paper, in which a theoretical formula converting IR luminosity to SFR was derived. That formula was expressed as ${\rm SFR}/(M_\odot~{\rm yr}^{-1})=\{3.3\times 10^{-10}(1- \eta)/(0.4-0.2f+0.6\epsilon)\} (L_{\rm IR}/L_\odot)$, where f is the fraction of ionizing photons absorbed by hydrogen, $\epsilon$ is the efficiency of dust absorption for nonionizing photons, $\eta$ is the cirrus fraction of observed dust luminosity, and $L_{\rm IR}$ is the observed luminosity of dust emission in the 8-1000-$\mu$m range. Our formula explains the IR excess of the Galaxy and the Large Magellanic Cloud. In the current paper, especially, we present the metallicity dependence of our conversion law between SFR and $L_{\rm IR}$. This is possible since both f and $\epsilon$ can be estimated via the dust-to-gas ratio, which is related to metallicity. We have confirmed that the relation between the metallicity and the dust-to-gas ratio is applied to both giant and dwarf galaxies. Finally, we apply the result to the cosmic star formation history. We find that the comoving SFR at z=3 calculated from previous empirical formulae is underestimated by a factor of 4-5.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.