Astrophysics
[Submitted on 23 Nov 2000 (v1), last revised 26 Jun 2001 (this version, v2)]
Title:The formation of cosmic structure with modified Newtonian dynamics
View PDFAbstract: I consider the growth of inhomogeneities in a low-density baryonic, vacuum energy-dominated universe in the context of modified Newtonian dynamics (MOND). I first write down a two-field Langrangian-based theory of MOND (non-relativistic), which embodies several assumptions such as constancy of the MOND acceleration parameter, association of a MOND force with peculiar accelerations only, and the deceleration of the Hubble flow as a background field which influences the dynamics of a finite size region. In the context of this theory, the equation for the evolution of spherically symmetric over-densities is non-linear and implies very rapid growth even in a low-density background, particularly at the epoch when the putative cosmological constant begins to dominate the Hubble expansion. Small comoving scales enter the MOND regime earlier than larger scales and therefore evolve to large over-densities sooner. Taking the initial COBE-normalized power spectrum provided by CMBFAST (Seljak & Zeldarriaga 1996), I find that the final power-spectrum resembles that of the standard LCDM universe and thus retains the empirical successes of that model.
Submission history
From: R. H. Sanders [view email][v1] Thu, 23 Nov 2000 14:29:26 UTC (16 KB)
[v2] Tue, 26 Jun 2001 14:33:51 UTC (19 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.