Astrophysics
[Submitted on 25 Oct 1994]
Title:Wiener Reconstruction of The Large Scale Structure
View PDFAbstract: The formalism of Wiener filtering is developed here for the purpose of reconstructing the large scale structure of the universe from noisy, sparse and incomplete data. The method is based on a linear minimum variance solution, given data and an assumed \prior model which specifies the covariance matrix of the field to be reconstructed. While earlier applications of the Wiener filter have focused on estimation, namely suppressing the noise in the measured quantities, we extend the method here to perform both prediction and dynamical reconstruction. The Wiener filter is used to predict the values of unmeasured quantities, such as the density field in un-sampled regions of space, or to deconvolve blurred data. The method is developed, within the context of linear gravitational instability theory, to perform dynamical reconstruction of one field which is dynamically related to some other observed field. This is the case, for example, in the reconstruction of the real space galaxy distribution from its redshift distribution When the field to be reconstructed is a Gaussian random field, such as the primordial perturbation field predicted by the canonical model of cosmology, the Wiener filter can be pushed to its fullest potential. In such a case the Wiener estimator coincides with the Bayesian estimator designed to maximize the {\it posterior} probability. The Wiener filter can be also derived by assuming a quadratic regularization function, in analogy with the `Maximum Entropy' method. The mean field obtained by the minimal variance solution can be supplemented with constrained realizations of the Gaussian field to
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.