General Relativity and Quantum Cosmology
[Submitted on 31 Jan 2005 (v1), last revised 11 Oct 2005 (this version, v2)]
Title:Relativistic hydrodynamics with sources for cosmological K-fluids
View PDFAbstract: We consider hydrodynamics with non conserved number of particles and show that it can be modeled with effective fluid Lagrangians which explicitly depend on the velocity potentials. For such theories, the {}``shift symetry'' $\phi\to\phi+$const. leading to the conserved number of fluid particles in conventional hydrodynamics is globaly broken and, as a result, the non conservation of particle number appears as a source term in the continuity equation. The particle number non-conservation is balanced by the entropy change, with both the entropy and the source term expresed in terms of the fluid velocity potential. Equations of hydrodynamics are derived using a modified version of Schutz's variational principle method. Examples of fluids described by such Lagrangians (tachyon condensate, k-essence) in spatially flat isotropic universe are briefly discussed.
Submission history
From: Alexander Feinstein [view email][v1] Mon, 31 Jan 2005 11:02:17 UTC (14 KB)
[v2] Tue, 11 Oct 2005 14:37:58 UTC (14 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.