High Energy Physics - Lattice
[Submitted on 20 Jun 2005 (v1), last revised 2 Dec 2005 (this version, v3)]
Title:QED$_3$ on a space-time lattice: compact versus noncompact formulation
View PDFAbstract: We study quantum electrodynamics in a (2+1)-dimensional space-time with two flavors of dynamical fermions by numerical simulations on the lattice. We discretize the theory using both the compact and the noncompact formulations and analyze the behavior of the chiral condensate and of the monopole density in the finite lattice regime as well as in the continuum limit. By comparing the results obtained with the two approaches, we draw some conclusions about the possible equivalence of the two lattice formulations in the continuum limit.
Submission history
From: Alessandro Papa [view email][v1] Mon, 20 Jun 2005 17:22:20 UTC (67 KB)
[v2] Mon, 11 Jul 2005 18:38:58 UTC (68 KB)
[v3] Fri, 2 Dec 2005 16:26:44 UTC (76 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.