High Energy Physics - Phenomenology
[Submitted on 12 May 2005]
Title:Upper Bounds on Rare K and B Decays from Minimal Flavour Violation
View PDFAbstract: We study the branching ratios of rare K and B decays in models with minimal flavour violation, using the presently available information from the universal unitarity triangle analysis and from the measurements of Br(B -> X_s gamma), Br(B -> X_s l^+l^-) and Br(K^+ -> pi^+ nu nubar). We find the following upper bounds: Br(K^+ -> pi^+ nu nubar)< 11.9 10^{-11}, Br(K_L -> pi^0 nu nubar)< 4.6 10^{-11}, Br(K_L -> mu mubar)_{SD}< 1.4 10^{-9}, Br(B -> X_s nu nubar)< 5.2 10^{-5}, Br(B -> X_d nu nubar)< 2.2 10^{-6}, Br(B_s -> mu mubar)< 7.4 10^{-9}, Br(B_d -> mu mubar)< 2.2 10^{-10} at 95 % probability. We analyze in detail various possible scenarios with positive or negative interference of Standard Model and New Physics contributions, and show how an improvement of experimental data corresponding to the projected 2010 B factory integrated luminosities will allow to disentangle and test these different possibilities. Finally, anticipating that subsequently the leading role in constraining this kind of new physics will be taken over by the rare decays K^+ -> pi^+ nu nubar, K_L -> pi^0 nu nubar and B_{s,d} -> mu mubar, that are dominated by the Z^0 -penguin function C, we also present plots for several branching ratios as functions of C . We point out an interesting triple correlation between K^+ -> pi^+ nu nubar, B -> X_s gamma and B -> X_s l^+l^- present in MFV models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.