High Energy Physics - Phenomenology
[Submitted on 19 Aug 2005 (v1), last revised 4 Jun 2007 (this version, v2)]
Title:Thermalisation in Thick Wall Electroweak Baryogenesis
View PDFAbstract: In models of thick wall electroweak baryogenesis a common assumption is that the plasma interacting with the expanding Higgs bubble wall during the electroweak phase transition is in kinetic equilibrium (or close to it). We point out that, in addition to the requirement of low wall velocity, kinetic equilibrium requires that the change in the momentum of the particles due to the force exerted by the wall should be much less than that due to scattering as the plasma passes through the wall. We investigate whether this condition is satisfied for charginos and neutralinos participating in thick wall supersymmetric electroweak baryogenesis
Submission history
From: Jitesh Bhatt [view email][v1] Fri, 19 Aug 2005 06:29:15 UTC (38 KB)
[v2] Mon, 4 Jun 2007 11:01:40 UTC (8 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.