Mathematics > Differential Geometry
[Submitted on 9 Feb 2000]
Title:A generalization of Cayley submanifolds
View PDFAbstract: Given a Kaehler manifold of complex dimension 4, we consider submanifolds of (real) dimension 4, whose Kaehler angles coincide. We call these submanifolds Cayley. We investigate some of their basic properties, and prove that (a) if the ambient manifold is a Calabi-Yau, the minimal Cayley submanifolds are just the Cayley submanifolds as defined by Harvey and Lawson; (b) if the ambient is a Kaehler-Einstein manifold of non-zero scalar curvature, then minimal Cayley submanifolds have to be either complex or Lagrangian.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.