Mathematics > Symplectic Geometry
[Submitted on 15 Feb 2000]
Title:Hamiltonian Gromov-Witten invariants
View PDFAbstract: In this paper we introduce invariants of semi-free Hamiltonian actions of $S\sp 1$ on compact symplectic manifolds (which satisfy some technical conditions related to positivity) using the space of solutions to certain gauge theoretical equations. These equations generalize at the same time the vortex equations and the holomorphicity equation used in Gromov-Witten theory. In the definition of the invariants we combine ideas coming from gauge theory and the ideas underlying the construction of Gromov-Witten invariants. This paper is based on a part of my PhD Thesis (see math/9912150).
Submission history
From: Ignasi Mundet i Riera [view email][v1] Tue, 15 Feb 2000 14:26:10 UTC (38 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.