Pattern Formation and Solitons
[Submitted on 21 Mar 1994]
Title:New exact fronts for the nonlinear diffusion equation with quintic nonlinearities
View PDFAbstract: We consider travelling wave solutions of the reaction diffusion equation with quintic nonlinearities $u_t = u_{xx} + \mu u (1 -u )
( 1 +\alpha u + \beta u^2 +\gamma u^3)$. If the parameters $\alpha , \beta$ and $\gamma$ obey a special relation, then the criterion for the existence of a strong heteroclinic connection can be expressed in terms of two of these parameters. If an additional restriction is imposed, explicit front solutions can be obtained. The approach used can be extended to polynomials whose highest degree is odd.
Submission history
From: Maria Cristina Depassier [view email][v1] Mon, 21 Mar 1994 17:57:00 UTC (7 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.