Quantitative Biology > Quantitative Methods
[Submitted on 15 Dec 2005 (v1), last revised 4 Dec 2006 (this version, v4)]
Title:Explicit factorization of external coordinates in constrained Statistical Mechanics models
View PDFAbstract: If a macromolecule is described by curvilinear coordinates or rigid constraints are imposed, the equilibrium probability density that must be sampled in Monte Carlo simulations includes the determinants of different mass-metric tensors. In this work, we explicitly write the determinant of the mass-metric tensor G and of the reduced mass-metric tensor g, for any molecule, general internal coordinates and arbitrary constraints, as a product of two functions; one depending only on the external coordinates that describe the overall translation and rotation of the system, and the other only on the internal coordinates. This work extends previous results in the literature, proving with full generality that one may integrate out the external coordinates and perform Monte Carlo simulations in the internal conformational space of macromolecules. In addition, we give a general mathematical argument showing that the factorization is a consequence of the symmetries of the metric tensors involved. Finally, the determinant of the mass-metric tensor G is computed explicitly in a set of curvilinear coordinates specially well-suited for general branched molecules.
Submission history
From: Pablo Echenique [view email][v1] Thu, 15 Dec 2005 18:49:43 UTC (167 KB)
[v2] Tue, 14 Feb 2006 16:28:28 UTC (188 KB)
[v3] Wed, 26 Apr 2006 11:09:30 UTC (188 KB)
[v4] Mon, 4 Dec 2006 17:46:41 UTC (188 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.