Computer Science > Robotics
[Submitted on 3 Aug 2021]
Title:Optimization Based Collision Avoidance for Multi-Agent DynamicalSystems in Goal Reaching Task
View PDFAbstract:This work presents a distributed MPC-based approach to solving the problem of multi-agent point-to-point transition with optimization-based collision avoidance. The problem is formulated, motivated by the work on collision avoidance for multi-agent systems and dynamic obstacles. With modifications to the formulation, the problem is converted into a distributed problem with a separable objective and coupled constraints. The problem is divided into local sub-problems and solved using Alternating Directions Method of Multipliers(ADMM) applied on an augmented local lagrangian this http URL work aims to understand the multi-agent point-to-point transition problem as an extension of optimization-based collision avoidance and analyze the aspects of computational times, reliability, and optimality of the solution obtained.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.