Computer Science > Robotics
[Submitted on 4 Aug 2021]
Title:Tolerance-Guided Policy Learning for Adaptable and Transferrable Delicate Industrial Insertion
View PDFAbstract:Policy learning for delicate industrial insertion tasks (e.g., PC board assembly) is challenging. This paper considers two major problems: how to learn a diversified policy (instead of just one average policy) that can efficiently handle different workpieces with minimum amount of training data, and how to handle defects of workpieces during insertion. To address the problems, we propose tolerance-guided policy learning. To encourage transferability of the learned policy to different workpieces, we add a task embedding to the policy's input space using the insertion tolerance. Then we train the policy using generative adversarial imitation learning with reward shaping (RS-GAIL) on a variety of representative situations. To encourage adaptability of the learned policy to handle defects, we build a probabilistic inference model that can output the best inserting pose based on failed insertions using the tolerance model. The best inserting pose is then used as a reference to the learned policy. This proposed method is validated on a sequence of IC socket insertion tasks in simulation. The results show that 1) RS-GAIL can efficiently learn optimal policies under sparse rewards; 2) the tolerance embedding can enhance the transferability of the learned policy; 3) the probabilistic inference makes the policy robust to defects on the workpieces.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.