Computer Science > Robotics
[Submitted on 16 Aug 2021]
Title:Smart Pointers and Shared Memory Synchronisation for Efficient Inter-process Communication in ROS on an Autonomous Vehicle
View PDFAbstract:Despite the stringent requirements of a real-time system, the reliance of the Robot Operating System (ROS) on the loopback network interface imposes a considerable overhead on the transport of high bandwidth data, while the nodelet package, which is an efficient mechanism for intra-process communication, does not address the problem of efficient local inter-process communication (IPC). To remedy this, we propose a novel integration into ROS of smart pointers and synchronisation primitives stored in shared memory. These obey the same semantics and, more importantly, exhibit the same performance as their C++ standard library counterparts, making them preferable to other local IPC mechanisms. We present a series of benchmarks for our mechanism - which we call LOT (Low Overhead Transport) - and use them to assess its performance on realistic data loads based on Five's Autonomous Vehicle (AV) system, and extend our analysis to the case where multiple ROS nodes are running in Docker containers. We find that our mechanism performs up to two orders of magnitude better than the standard IPC via local loopback. Finally, we apply industry-standard profiling techniques to explore the hotspots of code running in both user and kernel space, comparing our implementation against alternatives.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.