Computer Science > Robotics
[Submitted on 16 Aug 2021 (v1), last revised 14 Oct 2022 (this version, v4)]
Title:The Integrated Probabilistic Data Association Filter Adapted to Lie Groups
View PDFAbstract:The Integrated Probabilistic Data Association Filter (IPDAF) is a target tracking algorithm based on the Probabilistic Data Association Filter that calculates a statistical measure that indicates if an estimated representation of the target properly represents the target or is generated from non-target-originated measurements. The main contribution of this paper is to adapt the IPDAF to constant velocity target models that evolve on connected, unimodular Lie groups, and where the measurements are also defined on a Lie group. We present an example where the methods developed in the paper are applied to the problem of tracking a ground vehicle on the special Euclidean group SE(2).
Submission history
From: Mark Petersen [view email][v1] Mon, 16 Aug 2021 17:59:34 UTC (687 KB)
[v2] Tue, 24 Aug 2021 14:10:31 UTC (687 KB)
[v3] Thu, 24 Mar 2022 00:07:27 UTC (1,143 KB)
[v4] Fri, 14 Oct 2022 21:04:55 UTC (1,301 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.